
Assignment 3: Model-based reinforcement learning
Adrien Im (s3984389) & Bence Válint (s3796426)

Group Number: 4

1 INTRODUCTION
Reinforcement learning is an important approach in artificial in-
telligence for agents to learn optimal behavior through different
interactionswith their environment.Within reinforcement learning,
model-based agents have the advantage to construct a represen-
tation of their environment to enhance their ability to learn. This
report will investigate two model-based reinforcement learning
algorithms, more specifically the Dyna and Prioritized Sweeping
(PS) algorithms. These algorithms will be compared with a model-
free algorithm to investigate the effect of a ‘mental simulation’ on
the algorithms’ performances. Each algorithm will be investigated
with a range of planning iterations between real-world steps in
both a stochastic and a static environment. The environment that
will be used to conduct this research will be the Windy Gridworld
environment which is a basic grid where there is a certain chance
for wind. The agent starts in the position (0, 3) and aims to achieve
the goal at (7, 3). Each step gives an immediate reward of −1 and
reaching the goal gives a reward of +100. In the grid there is ’wind’
in columns 3, 4, 5 and 8 that pushes the agent up by a grid cell based
on a random chance controlled by the𝑤𝑖𝑛𝑑_𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 parameter.
In columns 6 and 7 the same wind is in place but it pushes the agent
up two grid cells instead of one.

2 DYNA
2.1 Methodology
The main goal of reinforcement learning is to approximate the op-
timal action-value function 𝑄∗ (𝑠, 𝑎) which is the expected return
of taking action 𝑎 in the state 𝑠 following the optimal policy 𝜋∗.
Q-Learning approaches the optimal state action value using the for-
mula:𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎)+𝛼[𝑟+𝛾max𝑎′𝑄 (𝑠′, 𝑎′)−𝑄 (𝑠, 𝑎)], where𝛼 is
the learning rate, 𝛾 is the discount factor, 𝑟 is the immediate reward
and 𝑠′ is the next state. Throughout the experiment, a learning rate
of 0.2 was used. The model-based reinforcement learning approach,
Dyna, has the distinct feature of simultaneously constructing an en-
vironmental model. For each transition (𝑠, 𝑎, 𝑟, 𝑠′), the agent updates
its model. This is done by maintaining transition counts 𝑛(𝑠, 𝑎, 𝑠′)
and reward sums 𝑅sum (𝑠, 𝑎, 𝑠′). By keeping track of these, the agent
can estimate the transitional probabilities 𝑃 (𝑠′ |𝑠, 𝑎) = 𝑛 (𝑠,𝑎,𝑠′)∑

𝑠′′ 𝑛 (𝑠,𝑎,𝑠′′)
and the expected rewards 𝑅(𝑠, 𝑎, 𝑠′) = 𝑅sum (𝑠,𝑎,𝑠′)

𝑛 (𝑠,𝑎,𝑠′) . The agent can
also plan ahead using simulated experiences on the learned model.
For each step in𝑛 steps, a previously visited state-action pair (𝑠, 𝑎) at
random. Subsequently, it selects a next state 𝑠′ corresponding to the
transition probabilities 𝑃 (𝑠′ |𝑠, 𝑎) and calculates the expected reward
𝑟 = 𝑅(𝑠, 𝑎, 𝑠′). Lastly, the agent performs a Q-Learning update using
the formula:𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) +𝛼[𝑟 +𝛾max𝑎′𝑄 (𝑠′, 𝑎′)−𝑄 (𝑠, 𝑎)]. To
approach the optimal state-action values, the agent first observes
its current state 𝑠 , then selects an action using the 𝜖 −greedy policy.
It receives a reward 𝑟 and the next state 𝑠′ and based on these it up-
dates its Q-values. The agent updates its transition counts 𝑛(𝑠, 𝑎, 𝑠′)
and reward sums 𝑅sum (𝑠, 𝑎, 𝑠′). Finally, it performs 𝑛 planning up-
dates using simulated experiences from the model [1].

2.2 Results
To investigate the difference that the number of plan steps has on
the episode returns over a period of 10001 we setup an experiment
in a stochastic environment (wind is applied 90% of the time) and
an experiment in a static environment (wind is always applied).

Figure 1: Learning curves of Dyna agents and a baseline in
the Windy Gridworld environment (wind = 1.0). Results are
averaged over 20 repetitions and smoothed.

Starting with the simple static environment where it is always
windy, the clear advantage of Dyna compared to Q-Learning is
visible in Figure 1. The blue line with no planning is representative
of Q-Learning while the other lines are Dyna agents with differ-
ent number of planning steps. The Q-Learning agent shows the
slowest learning curve requiring around 8,000 timesteps to reach
optimal performance. From the experiment it is also visible that the
Dyna agents with a higher number of planning steps have a faster
learning curve reaching optimal performance much earlier, clearly
highlighting the advantage of Dyna; learning through simulating
experiences with planning.

Figure 2: Learning curves of Dyna agents and a baseline in
the Windy Gridworld environment (wind = 0.9). Results are
averaged over 20 repetitions and smoothed.

Introduction to Reinforcement Learning, Leiden University, 2025

In regards to the stochastic environment in figure 2, while the
curves are not as clear as in the static environment the Dyna agents
are visibly outperforming the Q-Learning agent. The Q-Learning
agent has a slow learning curve, while the Dyna agents begin learn-
ing and increasing the episode returns much earlier. Similarly to
the static environment, the agents with a large number of planning
steps show quicker learning represented by larger episode returns
at earlier timestamps. The curves are visibly less smooth due to
the randomness caused by the stochastic environment and agents
can not yield maximum episode returns, but the large difference in
the learning efficiency of Dyna and Q-Learning agents is clearly
visible.

2.3 Interpretation
The above findings have several implications for reinforcement
learning applications. In the Dyna agent, each planning step pro-
vides additional value updates without requiring an incrementing
timesteps. This results in the learning of the agent being almost
multiplied by the number of planning steps. This is also supported
by the graphs, for example in Figure 1 it takes around 8000 timesteps
for the Q-Learning model to reach optimal performance, while the
agent with 5 plan steps takes a little over 2000 timesteps to reach
optimal performance; little more than 1

5 th of timesteps. The dimin-
ishing returns are also visible on both charts. The difference in
learning between the Q-Learning agents and the Dyna agent with
one planning step is much greater than the difference in learning be-
tween the Dyna agents with 3 and 5 planning steps. This highlights
the sample efficiency versus computation trade-off. While adding
extra planning steps does increase the sample efficiency since the
agent learns quicker, after a certain steps of planning adding extra
time planning steps increases computation time with little to no
effect on sample efficiency. Therefore, Dyna agents perform sub-
stantially better than Q-Learning agents by performing additional
state action updates through planning. This allows them to have
a greater episode return and approach the optimal performance
earlier. However, planning comes at the cost of computation, so it
is important to consider the sample efficiency versus computation
trade-off.

3 PRIORITIZED SWEEPING
3.1 Methodology
Prioritizes sweeping (PS) is another sophisticated model-based rein-
forcement algorithm. Similarly to Q-Learning the agent maintains
a Q-value function 𝑄 (𝑠, 𝑎) for each state-action pair representing
the expected cumulative reward: 𝑄 (𝑠, 𝑎) ≈ E [

∑∞
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘+1 |𝑠𝑡 =
𝑠, 𝑎𝑡 = 𝑎]. To model the environment the agents keeps track of the
transition counts 𝑛(𝑠, 𝑎, 𝑠′) and reward sums 𝑅sum (𝑠, 𝑎, 𝑠′) exactly
like the Dyna agent. However it also keeps track of the predecessor
sets 𝑃𝑟𝑒𝑑 (𝑠) which contains all the state action pairs (𝑠′, 𝑎′) that
can lead to state 𝑠 . By keeping track of these the agent can derive the
transitional probabilities 𝑃 (𝑠′ |𝑠, 𝑎) = 𝑛 (𝑠,𝑎,𝑠′)∑

𝑠′′ 𝑛 (𝑠,𝑎,𝑠′′)
and the expected

rewards 𝑅(𝑠, 𝑎, 𝑠′) = 𝑅sum (𝑠,𝑎,𝑠′)
𝑛 (𝑠,𝑎,𝑠′) , the same way the Dyna agent can.

To learn the agent applies the learning rule:𝑄 (𝑠𝑡 , 𝑎𝑡) ← 𝑄 (𝑠𝑡 , 𝑎𝑡) +
𝛼𝛿𝑡 , where 𝛼 is the learning rate, and 𝛿𝑡 is the temporal difference
error at timestep 𝑡 . The temporal difference error can be calculates
using the formula: 𝛿𝑡 = [𝑟𝑡 + 𝛾 ×max𝑎′𝑄 (𝑠𝑡+1, 𝑎′)] −𝑄 (𝑠𝑡 , 𝑎𝑡). For
the goal state the max𝑎′𝑄 (𝑠𝑡+1, 𝑎′) is set to zero. What makes PS
unique is priority based magnitude of temporal difference error.

Therefore the priority of a state action pair can be calculated using:
𝑝 (𝑠, 𝑎) = |𝛿𝑠,𝑎 |, where 𝛿𝑠,𝑎 temporal difference error of state action
pair (𝑠, 𝑎). If this priority exceeds the cutoff threshold 𝜃 then the
state-action pair is added to the priority queue. During planning this
agent selects the highest priority state-action pair (𝑠, 𝑎) and finds
a next state 𝑠′ according to the transitional probabilities 𝑃 (𝑠′ |𝑠, 𝑎).
Next it computes the expected reward 𝑟 = 𝑅(𝑠, 𝑎, 𝑠′), and finally it
updates the Q-value using the formula: 𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼[𝑟 +
𝛾max𝑎′𝑄 (𝑠′, 𝑎′)−𝑄 (𝑠, 𝑎)]. After updating a Q-value the model adds
all the state action value pairs (𝑠𝑝𝑟𝑒𝑑 , 𝑎𝑝𝑟𝑒𝑑) that could lead to 𝑠 to
the predecessor set 𝑃𝑟𝑒𝑑 (𝑠). It also calculates the expected reward
𝑟𝑝𝑟𝑒𝑑 = 𝑅 (𝑠𝑝𝑟𝑒𝑑 , 𝑎𝑝𝑟𝑒𝑑 , 𝑠) and using the expected reward it calcu-
lates the potential temporal difference error if (𝑠𝑝𝑟𝑒𝑑 , 𝑎𝑝𝑟𝑒𝑑) were
updated: 𝛿𝑝𝑟𝑒𝑑 = 𝑟𝑝𝑟𝑒𝑑 + 𝛾 ×max𝑎′𝑄 (𝑠, 𝑎′) −𝑄 (𝑠𝑝𝑟𝑒𝑑 , 𝑎𝑝𝑟𝑒𝑑). If it
exceeds the cutoff threshold 𝜃 it is added to the priority queue. This
is repeated 𝑛 times to achieve 𝑛 − 𝑠𝑡𝑒𝑝 planning. During evaluation
the model uses a greedy action selection [1].

3.2 Results
To investigate the performance of the prioritized sweeping model,
an experiment was constructed for PS agents with a range of 0 − 5
planning steps. The experiments were carried out in the same man-
ner as the experiment with Dyna agents; one in a static environment
where it is always windy and one in a stochastic environment with
90% wind.

Figure 3: Learning curves of Prioritized Sweeping and a base-
line in the Windy Gridworld environment (wind = 1.0). Re-
sults are averaged over 20 repetitions and smoothed

First looking at the static experiment it is clear that PS achieves
learning much faster than Q-Learning. While Q-Learning reached
optimal performance at around 8,000 timesteps, the PS agent with
5-step planning managed to do it in 2,000 timesteps. A pattern
can be seen in this environment, where the greater number of
planning steps results in faster optimal performance. Moreover,
the same pattern as in Dyna agents can be seen with diminishing
returns; the improvement in learning from 0 step planning to 1
step planning is significantly greater than the improvement from
3 step to 5 step planning agents. This also highlights the sample
efficiency versus computation dilemma due to the diminishing
returns. The PS agent’s learning curve differs greatly from the
Dyna agent’s learning curve because the learning curve is much
closer to linear. While the Dyna agent resembles the learning curve

Introduction to Reinforcement Learning, Leiden University, 2025

of the Q-Learning agent, the PS agent has a sharp linear learning
curve starting from the first timestep unlike the Dyna agents.

Figure 4: Learning curves of Prioritized Sweeping and a base-
line in the Windy Gridworld environment (wind = 0.9). Re-
sults are averaged over 20 repetitions and smoothed.

Looking at the stochastic graph in Figure 4, the learning curves
differ greatly from the static environment. The main difference is
that the PS agent with the largest number of planning steps does
not learn the fastest. It is still clear that PS agents show greater
episode returns earlier in the timesteps, but the pattern of a greater
number of planning steps resulting in greater optimal performance
is not shown anymore. The agent with 3 planning steps depicts
the quickest learning which also resembles a linear pattern until
the maximum performance of the agent is reach at episode return
= 50. Although quick learning is achieved, the other agents reach
a greater maximum return. Interestingly, the Q-Learning agent
reaches the maximum episode return in the last timestep.

3.3 Interpretation
The first and most noticeable difference between Q-Learning and
prioritized sweeping is the learning curve. The very linear nature
of the PS’s learning curve is due to its ordered approach to value
propagation. PS agents process state action pairs in order of their
expected impact. This is measured by the temporal difference error,
which is the basis for the priority queue. Due to a constant number
of planning steps, value information is spread through the state
space at a relatively constant rate, resulting in a linear learning
curve. Each real experience and 𝑛 step plan allows approximately
𝑘 (𝑛 + 1) states to receive accurate value updates, where 𝑘 is a con-
stant. The improvement is roughly proportional to the number of
states with accurate values; therefore, the improvement in episode
return is proportional to 𝑘 (𝑛 + 1) which is a constant. The dimin-
ishing returns are due to the same factor. A small increase in the
number of planning steps 𝑛 is significant at a low 𝑛 but at higher
values the difference is negligible. Regarding the stochastic model
seen in Figure 4, the reason why the PS agent with 5 planning steps
has a lower learning rate is due to the stochastic nature of the model.
Although using five planning steps allows more information to be
learned, it also proportionally allows for noise to be learned. At the
beginning of the training the agent’s model is based on very little
number of samples, which can lead to transitional probabilities get-
ting highly skewed. With five planning steps, the model becomes

more susceptible to overfit to these skewed transitional probabili-
ties, creating a suboptimal policy that leads to less learning. Later in
the training, when the model obtains more samples, the 5 planning
steps become beneficial since the transnational probabilities will
approximate the model’s actual probabilities and the agent will be
able to leverage more information and refine the policy to optimal
due to more thorough backward propagation of value information.
With greater planning steps, the agent has more opportunities to ob-
serve low probability, but potentially significant transitions, which
leads to more robust performance. The interesting phenomenon of
the Q-Learning agent achieving a greater return per episode can be
due to its model-free advantage. Q-Learning does not require any
planning and only uses experience gained by actual steps. It also
does not rely on estimated transitional probabilities and rewards.
Moreover, each update solely incorporates true environmental dy-
namics rather than approximations. This allows the Q-Learning
agent to be free of any model bias and therefore converge to a more
accurate representation of the true value function.

4 COMPARISON
To investigate the differences between Dyna and Prioritized Sweep-
ing agents it is important that we evaluate the two algorithms in
the same environment. We therefore simulated and plotted both a
Dyna and a PS agent on the same environment starting with the
static environment.

Figure 5: Learning curves of Dyna and Prioritized Sweeping
agents with 5 planning steps in the Windy Gridworld envi-
ronment (wind = 1.0). Results are averaged over 20 repetitions
and smoothed.

Figure 5 clearly depicts that the PS agent seems to have a faster
learning and achieves the optimal performance much quicker then
the Dyna agent. This can be explained by the difference in the
two algorithm’s approach to exploration. PS keeps track of which
state action will have the greatest expected impact. The states
with the largest prediction error get updates first and when there
is a large value change the model back propagates and updates
the predecessor states too. This creates a cascading effect where
information about the obtained rewards flows efficiently backward
through the state space. On the other hand, the Dyna agent updates
state action pairs randomly. This results in some updates with
minimal or no impact leading to a slower learning.

Looking at the differences in the stochastic environment in Fig-
ure 6 there are bigger differences between the two agents. First,

Introduction to Reinforcement Learning, Leiden University, 2025

Figure 6: Learning curves of Dyna and Prioritized Sweeping
agents with 5 planning steps in the Windy Gridworld envi-
ronment (wind = 0.9). Results are averaged over 20 repetitions
and smoothed.

due to the previously explained reason, the PS agent achieves a
quicker learning and has greater episode returns until around 4,000
timesteps when the Dyna agent yields a higher episode return.
While the learning of the Dyna agent is slower initially due to
its randomness in exploration, in the stochastic environment the
comprehensive exploration becomes a big advantage after suffi-
cient learning leading to higher episode returns. This is because of
how the PS agent treats stochasticity. Its prioritization mechanic
is highly sensitive to noise caused by the randomness of the en-
vironment leading to higher temporal difference errors and an
over-prioritization of states whose values fluctuate due to environ-
mental stochasticity. This leads to less exploration of states that
might be impactful and thus a lower maximum episode return.

Algorithm Average Runtime per Repetition (s)
Q-learning 2.80 ± 1.41
Dyna 2.83 ± 1.82
PS 3.11 ± 2.26

Table 1: Average runtime per repetition (in seconds) for
Q-learning, Dyna, and Prioritized Sweeping over 20 runs.
Planning-based methods show higher computational cost,
with PS being the slowest.

Table 1 above clearly highlights the computation versus sample
efficiency tradeoff. While the PS agent and the Dyna agents learn
quicker they also take more time per timestep due to the extensive
computation required for the planning. The Q-Learning algorithm
has the lowest average runtime per repetition due to it not using any
planning followed by the Dyna algorithm. The difference is minimal
with only 0.03s more time per repetition on average. This is because
although it performs planning it does it in a much quicker way
than PS. PS needs to calculate the temporal difference error adding
to the runtime and it also needs to keep track of a priority queue
which also significantly increases its runtime. This results in quicker
learning as seen in figure 5 but results in a more computationally
intense algorithm shown by table 1.

5 REFLECTION
To evaluate the strengths and weaknesses of model-based and
model-free algorithms it is essential to consider the learning curves.
Model-based algorithms aremore sample efficient, leading to quicker
learning and higher episode returns earlier into the learning pro-
cess. This is due to their ability to learn from simulated experiences
amplifying the information gain per timestep. This also leads to
the model-based agents to quickly adapt if the environment would
change. However, this strength comes with a key limitation. While
the model-free agent learns much slower it explores all the state
space leading to the highest potential episode return while model-
based algorithms might not achieve optimal performance. This phe-
nomena is especially seen in figure 6, where the PS agent doesn’t
reach the maximum episode return. The planning of the model-
based algorithms also comes at the cost of computation leading to
slightly slower times per timestep as seen in table 1.

Dyna and PS both have distinct benefits. While PS achieves
quicker learning and a faster adaptation, it lacks final performance.
On the other hand, the Dyna agent learns quicker but yields a
higher episode return. This highlights the practical differences in
implementation; a PS algorithm would excel in tasks where it has to
consistently adapt to changing environments while the Dyna agent
performs best in stable environments. A robust solution would be a
combination of the two where the priority based approach is used
for the start of the training and then eventually it slowly changes
into a random exploration to ensure the maximum potential episode
return.

With the Q-values initialized to 0 and a −1 step reward agents be-
gin with an optimistic value estimate compared to the true expected
reward. This newly created optimism encourages systematic explo-
ration because the unexplored state-action pairs will appear better
than they likely are. This results in a form of optimistic initialization
which was explored in the context of model-free agents. This will
promote exploration in bandit problems and significantly different
exploration patterns. Model-based environments will quickly over-
come this created bias towards exploration through their ability
of back propagation and planning. On the other hand Q-Learning
might take more time to overcome the optimal initialization.

6 CONCLUSION
The findings of the paper reveal important considerations for se-
lecting an algorithm in reinforcement learning. The model-based
agents’ enhanced learning capabilities and adaptability to a change
in the environment are clearly depicted. However, this advantage
comes at a considerable trade-off for computational resources. Fur-
thermore, our findings show that in stochastic environments model-
based agents may struggle to reach optimal performance. Model-
based algorithms excel in dynamic environments and show excep-
tional learning capabilities, but model-free agents remain crucial in
highly stochastic environments, where they guarantee optimality
and in situations with limited computational resources.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.

	1 Introduction
	2 Dyna
	2.1 Methodology
	2.2 Results
	2.3 Interpretation

	3 Prioritized Sweeping
	3.1 Methodology
	3.2 Results
	3.3 Interpretation

	4 Comparison
	5 Reflection
	6 Conclusion
	References

