
Assignment 2: Model-Free Reinforcement Learning in the
ShortCut Environment

Adrien Im (s3984389) & Bence Válint (s3796426)
Group Number: 4

1 INTRODUCTION
Reinforcement Learning (RL) is a framework for making sequen-
tial decisions by an agent who learns through interaction with
its environment. Within this framework, an important distinction
is made between model-based and model-free RL. Model-based
approaches are based on a model of the environment’s dynamics
for planning whereas model-free approaches are operated purely
through trial and error, without knowledge of state transitions and
reward functions. This allows model-free RL approaches to be use-
ful in environments with complex dynamics that are difficult to
model [1]. In this report, we will examine four different model-free
RL algorithms: Q-Learning, SARSA, Expected SARSA, and n-step
SARSA. These algorithms will be explored in the context of the
ShortCut Environment.

1.1 The ShortCut Environment
The ShortCut environment is a 12×12 grid with two blue starting
positions, randomly chosen at the start of each episode. Red cells
represent “cliffs”, which return the agent to the start and cause a
penalty of −100. Every other step has a reward of −1. There are
four possible actions in the environment: up, down, left, and right.
If the agent tries to move outside of the grid, it will stay in place
and get a −1 reward. The objective is to reach the single green goal
state, which ends the episode. The agent must learn to maximize
cumulative rewards by avoiding cliffs, staying within bounds, and
finding the shortest safe path to the goal.

2 METHODS
2.1 Q-Learning
The first explored model-free reinforcement learning algorithm
will be Q-Learning. Q-Learning maintains a state-action table with
an expected reward of each state-action pair and follows a greedy
policy to obtain its goal.

To walk through the algorithm the first step is to create Q-table
with each possible state-action pair initialized to zero or an arbitrary
value. The next step is to update the state-action values for a number
of episodes. Next up is to decide the exploration-exploitation policy
which in this case will be an epsilon-greedy policy. Starting from
one of the starting states using our policy we obtain an action
and update the state action value using the formula: 𝑄 (𝑆,𝐴) =

𝑄 (𝑆,𝐴)+𝛼 [𝑅+𝛾 ∗max𝐴′𝑄 (𝑆 ′, 𝐴′)−𝑄 (𝑆,𝐴)]. In the formula𝑄 (𝑠, 𝑎)
is the state-action expected reward, 𝛼 is the learning rate, 𝑅 is the
reward for taking action 𝐴 at state 𝑆 , 𝑄 (𝑆 ′, 𝐴′) is the expected
future rewards for taking the best action 𝐴′ from the next state. In
the equation the learning rate 𝛼 is used to determine how much of
the previous state-action value gets overwritten, with 1 meaning a
complete overwrite and 0 meaning no effect. 𝛾 is used to determine
the importance of future rewards, with 1 meaning that all long-term
rewards are considered and 0 meaning only intermediate rewards

are considered. Then the next state is taken as the current state and
the state-values are updated until the goal state is reached. For each
episode this process is repeated. When this loop is repeated for the
number of episodes a state-action table is obtain which can be used
along with a greedy policy to find the best path to the goal state.

2.2 SARSA
Anothermodel-free reinforcement learning algorithm is State-Action-
Reward-State-Action (SARSA). It also utilizes a state-action table
to store the reward of each state-action pair.

Similarly to the Q-Learning algorithm this algorithm also starts
off by initializing a state-action table with arbitrary values except
the goal state, which is set to 0. In this study this equation utilizes
the same exploration-exploitation policy, the epsilon greedy policy.
The algorithm start off by looping through each episode and up-
dating the state-action values within each episode. This is done by
choosing an action 𝐴 according to the policy 𝜋 , the epsilon-greedy
policy. Then the action 𝐴 is taken and reward 𝑅 and next state 𝑆 ′
are observed. The action from the next state 𝐴′ is also selected
by the policy 𝜋 . Subsequently the following formula is applied
to update the state-value of the original state-action pair 𝑄 (𝑆,𝐴):
𝑄 (𝑆,𝐴) = 𝑄 (𝑆,𝐴) + 𝛼 [𝑅 + 𝛾𝑄 (𝑆 ′, 𝐴′) −𝑄 (𝑆,𝐴)].

To break down this equation the same symbols are used as in
Q-Learning: 𝛼 is the learning rate, 𝛾 is the future-rewards tradeoff,
and𝑄 (𝑆 ′, 𝐴′) is the future rewards of action𝐴′ in state 𝑆 ′ according
to the policy 𝜋 . After updating the state-action value the new state
is used as the current state and this is repeated until the goal state
is reached. When the previously described process is done for the
number of episodes, a final table of state-action values are found
and like the Q-Learning algorithm this table can be used to find the
path to the goals state using a greedy algorithm [1].

2.3 Expected SARSA
Expected SARSA is another model-free algorithm that builds upon
the SARSA algorithm by changing the manner in which future
rewards are calculated. Instead of selecting the next action, and
using the corresponding Q-value, Expected SARSA will calculate
an expected value over the totality of possible actions using proba-
bilities given by the policy. As in the previous policies, the Q-table
is initialized with arbitrary values and an 𝜖-greedy policy is used
to trade off exploration and exploitation. During training, at each
step of an episode, the agent observes the current state 𝑆 , selects an
action 𝐴, observes the reward 𝑅, and the next state 𝑆 ′. After that,
instead of selecting the next action, the algorithm calculates the ex-
pected Q-value using the policy probabilities. The update formula
is: 𝑄 (𝑆,𝐴) = 𝑄 (𝑆,𝐴) + 𝛼 [𝑅 + 𝛾 ∑𝑎′ 𝜋 (𝑎′ |𝑆 ′)𝑄 (𝑆 ′, 𝑎′) −𝑄 (𝑆,𝐴)].
Where 𝜋 (𝑎′ |𝑆 ′) is the probability of taking action 𝑎′ in state 𝑆 ′.
This update is performed until the agent reaches the goal. Then the
next episode begins. Once the agent has been trained over all the

Introduction to Reinforcement Learning, Leiden University, 2025

episodes, the resulting Q-table is used to get the optimal path using
a greedy policy [1].

2.4 n-step SARSA
Lastly, n-step SARSA is another extension of the SARSA algorithm
that includes 𝑛 steps in the future for the update of the Q-value. It
does not use a single immediate reward, but instead makes use of a
cumulative discounted return over 𝑛 steps. Like the previous meth-
ods, the algorithm starts by initializing the Q-table with arbitrary
values. During training, the agent stores states, actions, and rewards
for 𝑛 steps. After these 𝑛 steps, the reward𝐺𝑡 at time 𝑡 is calculated
using: 𝐺𝑡 =

∑𝑛−1
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘 + 𝛾𝑛𝑄 (𝑆𝑡+𝑛, 𝐴𝑡+𝑛). The first part of the
equation,

∑𝑛−1
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘 represents the cumulative discounted re-
ward collected over the next 𝑛 steps. The second part is responsible
for the future rewards after the 𝑛 steps starting from state 𝑆𝑡+𝑛
and action 𝐴𝑡+𝑛 . Subsequently, the update rule is applied to update
the state-action values: 𝑄 (𝑆𝑡 , 𝐴𝑡) = 𝑄 (𝑆𝑡 , 𝐴𝑡) + 𝛼 [𝐺𝑡 −𝑄 (𝑆𝑡 , 𝐴𝑡)].
Here, 𝛼 is the learning rate, and 𝛾 is the discount factor. After the
agent updates the state-action values, the new starting state is 𝑡 + 1,
and the process is repeated for the next step in each episode [1].

3 EXPERIMENTS AND RESULTS
3.1 Q-Learning Results
Interpreting the results of the alpha variations of Q-Learning algo-
rithms there is a very clear pattern:

Figure 1: Q-Learning performance under different learning
rates 𝛼 in the ShortCut environment and the resulting greedy
trajectory. Lower 𝛼 values lead to slower learning, while
higher values enable quicker convergence. The agent ulti-
mately learns an aggressive trajectory that maximizes long-
term rewards.

According to Figure 1, it is clear that a larger alpha results in
a greater learning curve and higher cumulative rewards in earlier
episodes. This is because 𝛼 is the learning rate, and therefore a
higher learning ratemeans that when a state-action value is updated
more of the previous state-action value is overwritten. This results
in a faster learning curve and a higher cumulative reward earlier in
the training. On the other hand, the algorithm with a low alpha: 𝛼 =

0.01 had a very slow learning curve and yielded a lower cumulative
reward after training.

Investigating the path generated by the Q-Learning algorithm in
Figure 1 it is clear that it found the optimal path from both starting
locations.

We can see that both the blue and purple lines end up at the end
goal in a non-stochastic environment and given the information
that every steps yields a constant reward it is also apparent that
these two paths are optimal.

3.2 SARSA Results
When interpreting the results of the alpha variations of the SARSA
algorithm there is a also a clear pattern very similar to Q-Learning:

Figure 2: SARSA performance under different learning rates
in the ShortCut environment (left) and the corresponding
greedy trajectory after training (right). The learning curve
shows that low 𝛼 values result in slow convergence and re-
duced early performance. Compared to Q-learning, SARSA
shows greater variance and slower learning due to its on-
policy updates. The final greedy policy reflects a more con-
servative path, as the agent avoids risky areas for safer paths.

Although both Figure 1 and Figure 2 look very similar, there is a
key difference, which is the end behavior of the alpha variations.
Although the update equation of Q-Learning and SARSA is very
similar, the key difference arises when selecting the next action.
Q-Learning always calculates the updated state-action value using
the maximum future rewards using max𝐴′𝑄 (𝑆 ′, 𝐴′) (off-policy),
while in SARSA the next action 𝐴′ is given by the epsilon-greedy
policy (on-policy). This means that in the SARSA algorithm there
is some randomness in updating the state-action value since the
epsilon greedy policy has a chance of 𝜖

|𝐴 |−1 not selecting the best
action. Therefore, while in Q-Learning the cumulative reward of
each alpha variation approaches a certain value without variation
after a number of episodes, in SARSA this is not the case. With a
larger 𝛼 , a greater portion of the state-action value is overwritten,
and therefore in the 𝛼 = 0.9 model the approached value is lower
since when a non-best next action is chosen, 𝐴′, the future reward
will be lower 𝑄 (𝑆 ′, 𝐴′), and therefore 90% of the original state-
action value is overwritten to a lower value. On the other hand,
with a smaller 𝛼 a greater cumulative reward is approached since
the action chosen by the policy has a smaller effect on the updated
state-action pair.

Looking at the optimal trajectory given by the SARSA algorithm,
it is clear that it has found a different path optimal compared to
Q-Learning. The reason for this difference between Q-Learning
and SARSA trajectories is the difference in the two algorithms.
Q-Learning is off-policy, meaning that when updating the state-
action values, it will always use the best action to calculate future

Introduction to Reinforcement Learning, Leiden University, 2025

rewards. On the other hand, as previously stated, SARSA is on-
policy meaning that it will use the policy to calculate future rewards.
This means that due to the randomness in the selection of the next
action, it will prefer ’safer’ routes where this randomness cannot
set it back. This results in the algorithm preferring the long route
because it ensures that it cannot ’fall down a cliff’ due to the epsilon-
greedy policy. Therefore, the main difference between SARSA and
Q-Learning comes from the way of updating the state-action values;
Q-Learning takes into account the best action, while SARSA uses
the policy to generate an action.

3.3 Windy Environment
In addition to the normal ShortCut Environment, the performance
of SARSA and Q-learning algorithms was compared on a Windy
version of the grid. This environment adds stochasticity to the
environment by adding downward wind 50% of the time after each
action. Figure 3 shows the greedy trajectory produced by the Q-
learning algorithm in the Windy environment. As it is an off-policy
method, it is constantly updated with the highest action value,
which leads to a more ’risky’ path taken. When there is wind, this
can result in high-risk and unstable trajectories.

Figure 3: Greedy policies learned by Q-Learning and SARSA
in theWindy ShortCut environment. Q-Learning favors high-
reward but riskier paths, which become unstable under wind.
SARSA, as an on-policy method, learns safer trajectories by
incorporating actual actions during learning.

Figure 3 shows the policy learned by SARSA. Unlike Q-learning,
SARSA takes into account the actual action taken by the 𝜖-greedy
policy, leading to a more careful path selection. The figure shows
that SARSA is more suitable for environments with randomness,
where stability is important. Q-Learning seems to try to maxi-
mize rewards at the cost of using the path near the cliff, high risk,
whereas SARSA is more careful and takes fewer risks; however, it
also obtains a path with a lower cumulative reward.

3.4 Expected SARSA
When analyzing the alpha variations of the expected SARSA al-
gorithms in Figure 4, we can see a similar trend to the previous
methods, where higher learning rates converge faster and in this
case show a greater cumulative rewards within fewer episodes.

Like shown in Figure 4, the reason why 𝛼 = 0.9 offers the best
performance is because, unlike SARSA, there is no randomness

involved in updating the state-action values; therefore, a higher
learning rate also offers high stability. This is due to the nature of
the update equation previously discussed, which accounts for the
weighted average future reward. This means that each possible next
action is included, and therefore it is not necessary to choose a next
action. However, in expected SARSA the approached cumulative
reward is lower than Q-Learning because, like SARSA, it prefers
the ’safer’ path and accounts for the randomness in policy.

Figure 4: Expected SARSAperformance across different learn-
ing rates (left) and the corresponding greedy trajectory after
training (right). The learning curve shows that 𝛼 = 0.9 yields
the best performance, with faster convergence and higher
cumulative rewards. The resulting policy shows a balance
between efficiency and safety, avoiding risky regions while
maintaining relatively direct paths to the goal.

The greedy trajectory shown in Figure 4 shows that the agent is
able to reach the goal state from both starting positions, in a similar
manner to SARSA.

Compared to SARSA the main difference arises from the upper
right corner which the two algorithms take differently but that is
simply due to the randomness in SARSA due to the epsilon-greedy
policy. Both the SARSA and expected SARSA paths yield the same
cumulative reward, and they both prefer a path where no ’random
error’ can occur. However, compared to Q-Learning, the cumulative
reward is less; however, since the algorithm is on-policy, it accounts
for risk involving action selection, while Q-Learning prefers the
risky but rewarding path through the cliffs.

3.5 n-step SARSA
Figure 5 shows us the impact of varying 𝑛 on the agent’s learning
performance. For this plot, the value of 𝛼 was fixed at 0.1, and
different values of 𝑛 are plotted.

In Figure 5 interesting pattern emerges: agents with multi-step
updates (𝑛 > 1) result in higher cumulative reward earlier in the
training. However, agents with a greater 𝑛 also approach a smaller
cumulative reward. This is due to theway the update functionworks
in n-step SARSA. At multi-step updates the function collects the
reward for 𝑛 steps and updates the state-action value. The update
equation includes information on future rewards. With a larger
𝑛 the update function is more dependent on the collected reward
after 𝑛 steps to update the state-action values because the collected
reward will be greater than with a smaller 𝑛. This results in more
accurate results at the start and better short-term performance.
However, a smaller 𝑛 means that a more accurate future reward

Introduction to Reinforcement Learning, Leiden University, 2025

is needed since the reward after 𝑛 steps is less. This results in
algorithms with smaller 𝑛 relying on more accurate Q-values. Thus,
earlier in training, agents with a larger 𝑛 preform better, but also
converge to a lower cumulative reward.

Figure 5: n-step SARSA performance for varying step sizes
𝑛 (left) and the resulting greedy trajectory for 𝑛 = 5 (right),
using a fixed learning rate of 𝛼 = 0.1 Intermediate values such
as 𝑛 = 2 and 5 show the best balance between learning speed
and stability. Larger 𝑛 values lead to slower convergence.
The policy for 𝑛 = 5 trades between exploration and reward
maximization, resulting in a relatively efficient and robust
path to the goal.

When 𝑛 is set to∞ the algorithm will only use only the actual
observed reward andwill not account for any predicted reward. This
means that when updating the state-action values it will simply use
the observed discounted collective reward to update states-action
values.

Looking at the path taken by the n-step algorithm, it is clear that
it does not find the safest or most rewarding path. This is because of
the real vs. predicted reward trade-off. The greater the 𝑛 the greater
the importance of real rewards and the smaller the importance of
predicted rewards. Although with 𝑛 = 5 the agent relies on future
reward, since the agent must take 5 steps before updating, there
might be some noise in the state-action values resulting in some
approximation error and error in selecting the path. It is clear that
the algorithm finds the goal state but it does not do in in the most
rewarding or safest way.

4 DISCUSSION
4.1 Algorithm and Path Comparison
Across the different experiments, we have observed different learn-
ing behaviors and trajectories among the different algorithms.

TheQ-Learning algorithm proved to consistently converge quickly,
and found the most optimal paths in terms of rewards. This was
also true in the Windy environment, where the Q-Learning algo-
rithms showed the most direct route. However, this comes with the
weakness that it may not choose the most robust path as it showed
to perform riskier moves because it is off-policy.

The SARSA algorithm was slightly slower to converge when
compared to the Q-learning algorithm. SARSA also showed a more
conservative path selection. As it is an on-policy method, the algo-
rithm learned to stay away from cliffs or windy zones.

Expected SARSA finds a balance between fast learning and stable
behavior. The learning curves of expected SARSA were generally
smooth and consistent.

Finally, n-step SARSA, showed a range of learning performance
based on the value of 𝑛. The lower values of 𝑛 showed that the
algorithm was cautious in learning but found the path with the
greatest cumulative reward. Intermediate values such as 𝑛 = 5
achieved stable learning and efficient paths. However, a too large
value of 𝑛 proved to be inefficient.

4.2 Reflection
Through the implementation of four different model-free RL al-
gorithms, we have gained insight into the difference in learning
patterns for each algorithm and observed the different trajectories.
We have observed that Q-Learning was the most aggressive learn-
ing strategy, where it systematically finds the shortest and most
direct route, taking more risks in stochastic environments such as
the Windy ShortCut Environment. SARSA, on the other hand, con-
sistently showed more conservative behavior and illustrated how
on-policy learning accounts for stochastic environments. Overall,
through this assignment, we were able to deepen our understanding
of the trade-offs between on-policy and off-policy learning algo-
rithms. These insights are relevant in RL in general, as in real-world
problems, agents must balance uncertainty and risk in stochastic
environments.

5 CONCLUSION
In this assignment, we implemented four different model-free RL al-
gorithms: Q-Learning, SARSA, Expected SARSA, and n-step SARSA.
Each algorithm showed specific characteristics, with different strengths
and weaknesses. Q-Learning showed efficiency and optimality on
the path chosen, at the cost of taking risks in stochastic environ-
ments due to its off-policy nature. SARSA on the other hand showed
a conservative approach due to its on-policy learning, which led
to longer but safer trajectories. Expected SARSA extended SARSA
by removing the randomness from the next action selection due to
the epsilon-greedy policy and also preferred the longer and safer
path. Lastly n-step SARSA incorporated a balance between rewards
observed during 𝑛 steps and also future rewards. This showed good
results when 𝑛 is adjusted to an appropriate value. By taking into
account a sequence of 𝑛 rewards, n-step SARSA reduces some of
the bias present in the default SARSA, which heavily relies on
immediate rewards and bootstrapped estimates of future values.

We can conclude that each algorithm has strengths in different ar-
eas, and the choice of a specific algorithm depends on the nature of
the environment, and desired performance. While off-policy agents
find the path with the greatest cumulative reward they might not
be suitable for policies with large exploration-exploitation trade-
offs.For future research, it would be interesting to tests these algo-
rithms in various partially observable environments, or to analyze
more in depth the effect of 𝑛 values in n-step SARSA algorithms.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.

	1 Introduction
	1.1 The ShortCut Environment

	2 Methods
	2.1 Q-Learning
	2.2 SARSA
	2.3 Expected SARSA
	2.4 n-step SARSA

	3 Experiments and Results
	3.1 Q-Learning Results
	3.2 SARSA Results
	3.3 Windy Environment
	3.4 Expected SARSA
	3.5 n-step SARSA

	4 Discussion
	4.1 Algorithm and Path Comparison
	4.2 Reflection

	5 Conclusion
	References

