
Assignment 1B: Dynamic Programming
Adrien Im (s3984389) & Bence Válint (s3796426)

Group Number: 4

1 INTRODUCTION
Dynamic Programming (DP) is a fundamental approach in Rein-
forcement Learning (RL) for solving decision-making problems in
environments that are fully known. In this report, we will exam-
ine DP in the context of the Windy GridWorld environment, as
described by Sutton and Barto (2018) [1], and we will compare the
two DP algorithms, Policy Iteration and Value Iteration algorithms.
We will explore how DPmethods solves Markov Decision Processes
(MDPs) and analyze their behavior, strengths, and limitations. In the
experiment the Windy Grid World is an environment where each
steps has a reward of −1 and there is a vertical wind. In columns 2
and 5, the agent is pushed one additional step up, while in columns
3 and 4, the agent is moved up two additional steps.

2 MARKOV DECISION PROCESSES (MDP)
A Markov Decision Process (MDP) gives a framework for maximiz-
ing long-term rewards when making decision under uncertainty.
MDPs are defined by states S, a set of actions A, a transition func-
tion 𝑝 (𝑠′ | 𝑠, 𝑎), a reward function 𝑟 (𝑠, 𝑎, 𝑠′), and a discount factor
𝛾 ∈ [0, 1].

In WindyGridWorld, each state 𝑠 ∈ 𝑆 represents the agent’s
position on the grid, and the action space is made up of the different
actions the agent can make (up, down, left, right). The transition
function 𝑝 (𝑠′ | 𝑠, 𝑎) gives the probability of reaching state 𝑠′ after
taking action 𝑎 in state 𝑠 . The reward function gives the reward of
reaching the state 𝑠′ from state 𝑠 with action 𝑎.

The discount factor 𝛾 determines the importance of future re-
wards. A higher value of 𝛾 gives more importance to long-term re-
wards, while a lower 𝛾 value gives priority to immediate rewards. In
the reward_per_step=0 environment, the value of 𝛾 significantly
affects the optimal policy. If 𝛾 = 0, only the immediate rewards are
considered by the agent. This means that the agent will not move
as there is no incentive to do so. As the 𝛾 value increases, the agent
will be more inclined to find an efficient path to the goal.

3 DYNAMIC PROGRAMMING
Dynamic Programming (DP) is a collection of algorithms that is
used to solve MDP problems by computing the best policy when
the environment is fully known. In the context of reinforcement
learning, one of the applications of dynamic programming is to
compute the optimal policy of an environment by evaluating and
improving state-value functions or action-value functions. These
are called Policy Iteration and Value Iteration and they are two
important DP algorithms that will be studied below.

3.1 Policy Iteration
Policy Iteration is made up of two alternating parts: Policy Eval-
uation and Policy Improvement. Policy Evaluation evaluates iter-
atively the state-action value 𝑉𝜋 for a certain policy. It achieves
this using the Bellman expectation equation. Then, using the com-
puted values, Policy Improvement adapts the policy by greedily

choosing actions, maximizing the state-action values. This process
is repeated until the policy converges to an optimal one.

3.2 Value Iteration
Value Iteration merges the Policy Evaluation and Policy Improve-
ment into one single update using the Bellman optimality equation
[1]. This method usually converges faster than Policy Iteration by
updating the state-value function 𝑉 (𝑠) until the maximum update
falls below a specific threshold.

DP has the advantage that it guarantees to converge to an optimal
solution. It is also efficient in small environments. Therefore, if the
state space and action spaces are at a manageable level, DP allows
the agent to find the best policy.

However, in order to be able to use DP, we must have full knowl-
edge of the different transition and rewards of the environment.
This is something that is mostly not available in real-world prob-
lems. As DP requires the full environment to be known, the com-
plexity grows exponentially with state space. This makes it not
usable in large state spaces as it consumes excessive resources.
Moreover dynamic programming doesn’t use state pruning so even
unnecessary states will have their values reevaluated every cycle.

3.3 Generalized Policy Iteration (GPI)
Generalized Policy Iteration (GPI) is a process that alternates be-
tween Policy Evaluation and Policy Improvement, and allows us
to improve the policy faster, and leads to a faster convergence in
the policy [1]. Policy evaluation is the process of estimating the
value function 𝑉 𝜋𝑠 which is the expected reward when the agent
follows the policy 𝜋 . The second component of GPI is the policy
improvement. This process uses a greedy algorithm to change the
policy 𝜋 by choosing an action that maximizes future rewards. In
GPI these two processes are repeated until convergence. In essence,
dynamic programming is an implementation of GPI, where policy
iteration explicitly follows GPI’s policy evaluation and improve-
ment cycle. Value iteration on the other hand doesn’t explicitly use
the GPI policy evaluation and improvement cycle but like stated
before it combines these two into one step that is repeated until
convergence.

4 EXPERIMENTS AND RESULTS
In our experiments, we applied both Policy Iteration and an 𝜖-
greedy approach in the Windy GridWorld environment. The state
space is represented by the grid, where the wind pushes the agent
upwards. There is one start state, labeled S, and one goal state,
labeled G. The reward for each state was set to 0, so the discount
factor 𝛾 plays an important role in allowing the agent to reach the
goal.



Introduction to Reinforcement Learning, Leiden University, 2025

4.1 Value Iteration Q-values

Figure 1: Q-values under Value Iteration

Figure 1 shows theWindy GridWorld environment after converging
with Value Iteration. The arrows show the optimal actions. Even
though there is −1 reward for each step taken, the 𝛾 value of 1 gives
the agent an incentive to move towards the goal.

Once converged, Value Iteration gives an optimal policy. From
the different grid boxes 4 numbers can be seen each representative
of the maximum reward that can be achieved by taking the respec-
tive action. The policy is basically following the action with the
highest rewards, so in the starting position, the action to go right,
which yields the highest expected reward.

4.2 𝜖-Greedy Policy Q-values

Figure 2: Q-values under an 𝜖-greedy policy.

Figure 2 shows the 𝑄 values for each action in each cell, and the
optimal action at each state. Similarly to the Value Iteration the

policy aims to select the best action, however, the 𝜖-greedy policy
has a certain amount of randomness in the action selection process,
given by the value of 𝜖 . The best action is shown by the highest 𝑄
value.

In Figure 2, the state-action values are often below 0, meaning
that it would not make sense to take them, since the reward of not
moving is 0. This can be explained by the randomness caused by
the 𝜖 , since the randomness might offset the agent leading to more
step and more negative rewards for these extra steps, to achieve
the goal state.

Comparing Figure 1 and Figure 2, we can see that Value Itera-
tion has significantly greater state-action values compared to the
𝜖-greedy policy. As previously mentioned this is due to the random-
ness in the agents movement caused by the 𝜖 in the 𝜖-greedy policy.
On the other hand, the value-iteration agent can simply greedily
select the best action and always achieve it in a specific number of
steps, yielding a higher expected reward.

5 DISCUSSION
We can derive several insights from our experiment.We can observe
that the DP algorithms are able to find optimal policies for the
Windy GridWorld environment. We can see the importance of the
discount factor 𝛾 , especially in the environment in which there is
no immediate reward.

We were also able to observe the limitations of DP algorithms.
Some further research that can be done is for example using DP
concepts and adapt them to be used for partially known environ-
ments, instead of fully known environments. Also, more research
can be done regarding the impact of 𝛾 on the policy robustness.

6 CONCLUSION
Dynamic Programming successfully solves the MDP by making
use of its full knowledge of the environment. Using GPI methods
such as policy evaluation and policy improvement, we are able to
converge to an optimal policy. Despite challenges in applying DP
to larger environments as it requires extensive computing power,
we can see how it serves as a foundation to more complex rein-
forcement learning algorithms. Further research about how these
DP techniques can be used for complex real-life applications would
be interesting to perform.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.


	1 Introduction
	2 Markov Decision Processes (MDP)
	3 Dynamic Programming
	3.1 Policy Iteration
	3.2 Value Iteration
	3.3 Generalized Policy Iteration (GPI)

	4 Experiments and Results
	4.1 Value Iteration Q-values
	4.2 -Greedy Policy Q-values

	5 Discussion
	6 Conclusion
	References

