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1 INTRODUCTION
Reinforcement Learning is a fundamental part of machine learning.
It consists of agents learning through interactions with their envi-
ronment. One of the key difficulties of reinforcement learning is
the question of exploration and exploitation. As the agent learns
about actions and their rewards through exploring its environment,
it is important to determine at which point the agent should stop
exploration, and start exploiting actions. One framework for this
exploration vs. exploitation trade-off problem is the multi-armed
bandit problem, which allows us to study this in more detail, as
it is one of the simplest models of problems. In the context of re-
inforcement learning, the term bandit refers to a problems where
the agent has to take a series of actions to maximize its reward in
an unknown environment. Efficient exploration is important, to
maximize the actions that yield the highest reward. [1].

In this report, we will analyze different exploration strategies
such as 𝜖-greedy, Optimistic Initialization, and Upper Confidence
Bound in the context of multi-armed bandit problems. We will
explore their differences and compare their performances in finding
the highest reward optimally.

2 EPSILON-GREEDY EXPLORATION
2.1 Methodology
One of the main challenges of reinforcement learning is balancing
exploration and exploitation. The 𝜖-greedy policy addresses this
challenge by combining the naive agent and random agents to form
a policy that balances exploration and exploitation. The 𝜖-greedy
agent allows us to control the exploration and exploitation of the
agent. 𝜖 determines the probability of the agent choosing a random
action, and 1 − 𝜖 represents the probability that the agent selects
the highest reward action that is known by the agent.

The 𝜖-greedy policy can be formalized as follows:

𝜋𝜖-greedy (𝑎) =

1 − 𝜖, if 𝑎 = argmax

𝑏∈A
𝑄 (𝑏)

𝜖
|A |−1 , otherwise

(1)

where: 𝜖 is the exploration probability,A is the set of all possible
actions, |A| is the number of available actions, and 𝑄 (𝑏) is the
estimated value of action 𝑏.

This means that the agent chooses the action with the highest
reward with a probability of 1 − 𝜖 and other actions are randomly
chosen with a probability of 𝜖 . The best-known action is selected
most of the time, and there is still a small chance to select another
action for exploration.

In our implementation of the 𝜖-greedy agent, the estimated re-
ward for each action is stored in an array 𝑄 that is initialized to 0.
After an action is selected, the agent updates the reward estimate
for that action using the following formula:

𝑄𝑡+1 = 𝑄𝑡 +
1
𝑁𝑡

(𝑅𝑡 −𝑄𝑡 ) (2)

where: 𝑄𝑡 is the current estimate of the action’s value, 𝑅𝑡 is
the reward received after selecting the action at time 𝑡 , 𝑁𝑡 is the
number of times the action has been selected.

This is the update rule that we use which allows the agent to
calculate the average of the rewards for each action without stor-
ing the history of past rewards. This rule allows us to put more
weight on rewards that were received early in the learning process
compared to those earned later.

In summary, the 𝜖-greedy policy takes care of the exploration-
exploitation trade-off by using probability to select either random
actions (exploration) or actions with the highest known reward
(exploitation). This, combined with the update rule that allows the
agent to be more accurate over time allows the 𝜖-greedy policy to
manage this trade-off issue.

2.2 Results

Figure 1: Average reward for 𝜖-greedy across different 𝜖 values

Figure 1 shows the average rewards over time for 𝜖-greedy agent
graph with varying values of 𝜖 . The values 𝜖 = 0.01, 0.05, 0.1,
and 0.25 were used to analyze trade-off between exploration and
exploitation. To ensure stable and reliable results, all experiments
were averaged over 500 runs.

Figure 1 shows that while higher epsilon values (𝜖 = 0.25 for
example) get higher reward on the short-term, they plateau earlier
and at lower values than lower 𝜖 values. Lower 𝜖 values (such as
𝜖 = 0.01) converge more slowly due to less exploration but achieve
higher long-term rewards by focusing on exploitation.

This behavior illustrates that there exists a trade-off in 𝜖-greedy
exploration. A higher epsilon increases exploration, and over time,
too much exploration is harmful because the agent keeps selecting
suboptimal actions, even though it knows the optimal action. Also,
too little exploration means that the agent does not discover the
best action, and too quickly settles for a suboptimal one.
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Figure 1 illustrates this trade-off, showing that higher 𝜖 values
lead to longer exploration, delaying the convergence due to time
spent on suboptimal actions.

From the results of the experiment, 𝜖 = 0.1 can be recommended,
as it is a middle value that balances exploration and exploitation.
When 𝜖 is 0.1, it quickly reaches maximal reward value, and main-
tains one of the highest rewards in the long-term. We can say that
it is therefore one optimal value for 𝜖 in this setting.

3 OPTIMISTIC INITIALIZATION (OI)
3.1 Methodology
In addition to 𝜖-greedy, there are other policies that allow us to
address the challenge of balancing exploration and exploitation. We
will be looking at two of these methods: Optimistic Initialization
(OI) and Upper Confidence Bounds (UCB).

OI consists of exploring by initializing the estimated 𝑄 -values
to a very large value, such as the maximal reward for an action.
In other agents such as 𝜖-greedy, 𝑄-values are initialized to zero.
However in OI, we initialize the 𝑄-values to a high value such as
1.0 so that the agent expects that all actions will give a high reward.

The agent then follows a greedy policy, and will always select the
action with the highest reward. Since all actions are initialized to a
high 𝑄-value, the agent has the tendency to try all the actions. As
the agent explores the different actions, the𝑄-values of each action
are updated. This allows the agent to determine which actions give
a higher reward without having to randomly explore all actions [1].

Similarly to 𝜖-greedy, in OI as well, the 𝑄 value can be updated
using the update rule as shown in Equation (2). An alternative
update rule using a constant learning rate 𝛼 has been tested.

𝑄𝑡+1 = 𝑄𝑡 + 𝛼 (𝑅𝑡 −𝑄𝑡 ) (3)
where 𝛼 is a small positive constant. The usage of this update

rule resulted in a constant learning rate for corrections to the 𝑄-
values. For the experiement conducted in this paper the alternative
rule that was used for our experiment of OI.

3.2 Results

Figure 2: Average reward over time for the Optimistic Initial-
ization agent with varying initial 𝑄-values

Figure 2 shows the average rewards over time for the OI agent using
different initial 𝑄-values. We can observe that higher initial values
tend to show better results in long-term performance. Among the
different initial𝑄-values used, we can notice that𝑄 = 0.7 performed
the best, by yielding a higher reward than other values. Values
of 𝑄 = 0.5 and 1 also perform reasonably well, in contrast with
𝑄 = 0.1.

The results above show that the choice of 𝑄 is crucial for OI
agents. Higher values of 𝑄 , have been tested, but have not shown
any significant performance increase compared to 𝑄 = 1, as the
maximum reward is 1. We can conclude that for environments with
rewards ranging from 0 to 1, initializing the𝑄-value to 0.7 provides
a good balance between exploration and exploitation.

4 UPPER CONFIDENCE BOUND (UCB)
4.1 Methodology
The third strategy for balancing exploration and exploitation that
we will discuss is Upper Confidence Bound (UCB). UCB differs from
the 𝜖-greedy and Optimistic Initialization in the way it balances
exploration and exploitation. UCB keeps track of how many times
a certain action has been taken in order to calculate the uncertainty
term, to find the potential highest reward for an action.

At every time step 𝑡 , UCB selects the action 𝑎 according to the
following policy:

𝜋𝑈𝐶𝐵 (𝑎) =

1, if 𝑎 = argmax

𝑏∈A

[
𝑄 (𝑏) + 𝑐

√︃
ln 𝑡
𝑁 (𝑏 )

]
0, otherwise

(4)

Importantly, this policy favors exploration of actions that have
been selected fewer times in the past since they have a higher
potential for the highest reward. We must note that depending on
the environment, the UCB method requires to carefully tune the
𝑐 value. This is because a 𝑐 value that is too high is susceptible of
over-exploration, while a 𝑐 value that is too low will miss on higher
reward actions [1].

4.2 Results

Figure 3: Average reward over time for the UCB agent with
varying 𝑐 values



Introduction to Reinforcement Learning, Leiden University, 2025

Figure 3 shows the performance of the UCB agent with different 𝑐
values. Higher 𝑐 values clearly perform worse initially, where as
smaller values seem to converge more quickly to the maximum
reward, such as when 𝑐 = 0.01 and 0.1.

We can explain this difference by looking at how the parameter
𝑐 (learning rate) in the formula affects the balance between ex-
ploration and exploitation: higher 𝑐 values place greater emphasis
on exploring actions with the highest potential for a high reward,
which delays convergence, whereas lower 𝑐 values focus more on
exploiting known good actions, leading to faster convergence. For
our specific experiment, we can recommend the use of 𝑐 = 0.1.

5 DISCUSSION
After experimenting with three different exploration methods, we
can see that they have key differences in the way they balance explo-
ration and exploitation. 𝜖-greedy introduces exploration through
randomly selecting actions, regardless of how often a specific action
has been tried in the past. Optimistic Initialization tries to explore
by artificially setting 𝑄-values very high. This can be an effective
method, under the important condition that the initial 𝑄-value is
correctly selected. Finally, Upper Confidence Bound explores in a
smarter way by exploring each action’s maximum potential reward.

In order to compare empirically the different methods, we con-
ducted an experiment using each agent’s near-optimal parameter
settings: 𝜖 = 0.1 for 𝜖-greedy, an initial𝑄-value of 0.7 for Optimistic
Initialization, and 𝑐 = 0.1 for UCB.

Figure 4: Comparison of the average reward over time using
near-optimal parameter values

Figure 4 illustrates the overall performance of each method,
highlighting that Optimistic Initialization and UCB achieve faster
convergence and higher rewards compared to 𝜖-greedy.

From the figure, we can observe that OI and UCB both initially
reach a high reward at a faster rate than 𝜖-greedy. This is because
the exploration rate for the UCB and IO decreases with steps taken,
leading to better performance in the short and long term. We can
also point out that the careful selection of an optimal parameter is
paramount for different agents.

In case the computational power is limited, 𝜖-greedy can be an
appropriate method for balancing between exploration and exploita-
tion, as it requires the least amount of mathematical calculations.
However, the 𝜖-greedy agent is outperformed by the UCB and IO
agents, given unlimited resources.

Figure 5: Average reward over the first 1000 steps for each
agent across different parameter values

Figure 5 demonstrates the importance of parameter tuning as it
shows that each type of agent has a specific parameter at which
it performs best in a given environment. It is crucial to use this
optimized parameter to achieve the highest results.

An interesting future step that can be taken could be the com-
bination of different strategies seen in this report. Furthermore,
changing the parameter over time instead of having it fixed could
be an interesting development.

6 CONCLUSION
In conclusion, we have looked at the challenge of balancing explo-
ration and exploitation in reinforcement learning through multi-
armed bandit problems.

Through our experiments, we observed that while 𝜖-greedy pro-
vides a simple and robust solution, it can be less efficient compared
to other methods like Optimistic Initialization and UCB in terms
of performance. UCB and IO seem to have the same long-term
performance with slight differences in the begging of the learning
curve. Careful selection of parameters plays a crucial role in max-
imizing performance in all strategies. Future work could explore
hybrid methods or adaptive parameterization to further optimize
exploration strategies.
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